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O(3, 1) symmetry of the hydrogen atom 
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Department of Physics, Indian Institute of Technology, Kharagpur. India 

Received 19 November 1973 

Abstract. The transformation coefficients connecting the Stark and the angular momentum 
states belonging to the positive spectrum of the hydrogen atom are calculated by a group- 
theoretical method which makes use of the O(3, 1) symmetry of the states and also by a 
purely analytical method. The results of the two calculations agree except for an undeter- 
mined factor not containing the orbital quantum number 1. Complete agreement between 
the results is achieved by taking the normalization factors for the continuum states to be 
analytic continuations of those for the bound states. The transformation coefficients turn 
out to be SU(2) Clebsch-Gordan coefficients ( j ,  j,1: m ,  m 2 m )  with complex j ,  j ,m,  m , ,  
and physical 1,m. From the general theory the well known expansion of the Coulomb 
scattering function is obtained by giving the magnetic quantum number m and one of the 
electric quantum numbers, n 2 ,  the special values, 0 and - 1, respectively. 

1. Introduction 

It  is well known (Lenz 1924, Pauli 1926, Bargmann 1936) that, in the case of the non- 
relativistic hydrogen atom, there is an additional operator 

which commutes with the hamiltonian H = ( 2 ~ ) -  lp2 - Ze2/r .  In a fixed energy subspace 
L and M satisfy the commutation relations, 

[L i ,  L j]  = icijkLk, [L i ,  M j ]  = iEijkMk 
2E 
P 

[ M i ,  Mi]  = -i-cijkLk. (1.1) 

When M is replaced by h = (p/elEl)''2M, these become the commutation relations for 
the generators of O(4) if E < 0 and O(3, 1) if E > 0. The bound and the scattering states 
of the hydrogen atom, therefore, form bases of irreducible representations of O(4) and 
O(3, l), respectively. The O(4) symmetry of the bound states has been investigated in 
great detail by a number of authors (Fock 1935, Park 1960, Bethe and Leon 1962, 
Swamy and Biedenharn 1964, Dothan et  al 1965, Sudarshan et a1 1965, Barut et  a1 1966, 
Flamand 1966, Bander and Itzykson 1966, Hughes 1967, Joseph 1967, Barut and Kleinert 
1967) and the main results that have emerged are the following: 

(i) The irreducible representations of O(4) that occur in the problem are of the special 
type Dj1 j2  with j ,  = j ,  = 3n- 1). 
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(ii) For the same energy, the angular momentum states IC/,lm and the Stark states 
IC/,,,,,, constitute different bases of the same irreducible representation, and the trans- 
formation coefficients connecting them are SU(2) Clebsch-Gordan coefficients (CGC).  

In the present paper we shall show that the results established for the bound states 
hold also for the scattering states provided we allow certain quantities to take unphysical 
complex values. The relation, jl = j ,  = &I- l), again holds with imaginary n and 
complex j ,  , j ,  , and the transformation coefficients between the angular momentum and 
the Stark states turn out to be complex generalizations of the SU(2) CGC. In fact, it is 
found that, with a proper interpretation of the mathematical symbols, the same theory 
applies to the bound and the scattering states. This was demonstrated in Basu and 
Majumdar (1973, to be referred to as I) for the special case of Coulomb scattering of an 
electron by a positively charged centre. We consider this problem again in the present 
paper for clarifying certain points and then pass on to the general case. 

2. The case of Coulomb scattering 

In order to test the correctness of conclusion (ii) above in the case of scattering states 
the well known expansion of the Coulomb scattering function 

4c = eik‘,Fl( - iN, 1, ik(r - z ) )  

with 

was rederived in I by the group-theoretical method. Operated on by 3 L  f i@, $c  was 
found to behave like the product IC/j,,,IC/jz,z with j ,  = j ,  = -m1 = m, = gn- 1). 
Consequently, the expansion of $c in terms of the angular momentum states 

= Nn104n10 took the form 

$c = 1 {%n-l) ,gn-l) ,  I :  - ~ n - 1 ) , 3 ( n - 1 ) , 0 } N , , o p ’ e - P ’ 2  
I 

x 1 + 1 - n, 21 + 2 ; p)P,(cos 0) (2.2) 

with n = -iN, p = -2ikr, and the curly brackets denoting a CGC. With appropriate 
values of NnIO this was found to be in agreement with the standard expansion. To 
demonstrate this we determine the ‘normalization factors’ of the wavefunctions I),,,~ 
of the continuous spectrum. This we do by using the hermitian property of A,. By 
definition, 

(2.3) = (2hk)- ‘(p x L - L x p ) ,  + ihnu, 

where 

= COS e. 
Since the functions on which it operates are independent of 4, A, is effectively equal to 

a 2  a i ( i+i)  
2% [ (uZ-l)-+u apau (ap  )]+‘‘nu. 
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Operating on 4n10 this gives 

( l+I -n) ( l+I+n)  
2(21+1)(21+3) 4 n f + 1 0  

h34, ,10 = - 2irV24,,,- + ih 

The result is obtained by using the recursion relations for P/(u) and the relations 

a-c 
F(a,c) -F(a+ 1, c+  1) = - p F (  a + 1, c + 2) 

c(c+ 1) 

(2.6) 
a - c + l  U 

pF(a, c) + - p F ( a + l , c + l )  = F(a-l,c-2), 
F(a7 cl+@- l)(c-2) c(c - 1) 

where F(a, c) denotes lFl(a, c; p ) .  The hermiticity of h, now gives 

( I  - n)(  I + n )  2 121 = 4f2(21- 1)(21+ 1) 

whence, 

(1 +I-n)( l  + l + n )  ( (21+ 1)(2l+3) 
x phase factor. (2.9) ( n  I+  1 ~ I l i i ~ l n  IO) = ih(I+ 1) 

The expression (2.8), substituted in (2.2), gives the standard expansion of $c except for an 
undetermined factor occurring outside the summation. 

The treatment given above of the Coulomb scattering case cannot be regarded as 
wholly satisfactory. For, the method delineated here does not determine the normaliza- 
tion factor Nnoo. Secondly, the function 4c does not seem to have any connection with 
the general Stark state of the continuum. These shortcomings will be removed in the 
next section by using the concept of analyticity. 

3. The general Stark state of the continuous spectrum 

As already indicated, the general Stark state I,!I,,,,,,, of the continuum may be regarded 
as an analytic continuation, in both parameters and variables, of the bound state 

n , + n , + I m l + l  = n .  (3.3) 

In the case of scattering states, n ,  and n2 are arbitrary complex numbers subject to the 
restriction (3.3) with integral m and imaginary n. The angular momentum states $,,,,,, 
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of the continuum are, likewise, analytic continuations of the states 
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$nlm = Nb,, e-Por(2por)1 F,( 1 + 1 - n, 21 + 2 ; 2por)P;(cos 6) e"+ 
with 

( - ~ ) ~ p ; / *  r ( n  + I+ 1)(1 - m)! (21 + 1) 
(21+ l)! ( r(n - I)(I + m)! nn Nhlm = 

The analytic continuation is performed by putting 

- 2pE ' I 2  
p = 2p,r, pa = (T) = -ik, n = -iN, I .  > N < 0. 

(3.41 

5) 

For complex n ,  , n2 and imaginary n the function I),,,,,,~ is, therefore, expected to admit an 
expansion in terms of the functions t,hnlm, the coefficients in the expansion being analytic 
continuations of SU(2) CGC. This implies the existence of an identity of the type 

~ " ' ( 1  - u ~ ) ' " ' ' ~ ~  F,(u, c ; I p ) ,  Fl(a', c ; pp)  

= f ~lp l ,F l (a+a '+I - Im( ,  21+2; p)P;"(cos 6) 
l = l m l  

(3.6) 

with c = /mi+ 1. The expansion of in terms of $nlm is obtained on multiplying 
both sides by exp[i(m+ + kr)]. We now proceed to establish this identity by the standard 
methods of analysis taking c to be a positive integer and a, a' to be arbitrary complex 
numbers. 

Denoting the left-hand side of (3.6) by L and expanding the angular part in a series 
of Legendre functions, we have, for m 2 0, 

(3.7) 

, ,,(m+r)!(n--r)!(21+1) - !+m,!+m+l , r+m+l ;  
I m!(n+m+l) !  3F2[ m + n + 2 , m + 1  

= C ( - 1 )  2 

where, 3F2[ ] denotes a generalized hypergeometric series of unit argument. The 
identity (Bailey 1935, Slater 1966) 

1 3F2 [u.:':'] = T(d)T(d - U - b)  

r ( d ) r ( e ) r ( a  + b - d ) r ( d  + e - a - b - C )  
, 

r ( a ) r ( b ) r ( e  - c)r(d + e - U - b) 

1 d - a, d - b, d + e - a - b - c ;  

d - a - b + l , d + e - a - b  (3.9) 
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then gives, 

(m+r) ! (n - r ) ! (n -m) ! (21+ 1) 
m !  

(3.10) 

When (3.10) is substituted in (3.7) and the 3F2(l) series is written in an expanded form 
with s as the summation index, r !  cancels out from the numerator and the denominator 
and the sum over r reduces to a ,Fl(l) series. This 2Fl(l) series can be evaluated by using 
Gauss's formula, ,F,(a, b :  c :  1) = T(c)T(c-a-b) /T(c-a)T(c-b) .  When this is done, 
the sum over s reduces to another 3F2(1) series and L takes the form 

(3.11) 
with 

n = l + t .  

From (3.1 1) it is evident that the identity (3.6) holds with 

(3.12) 1 ( - 1)"2"m! r(a + a'+ I - m)  
r(a + a')(21!) 

- I +  m, I + m + 1, a : 
.Fi[ a+a', m+ 1 

B,  = 

and with no restriction imposed on a, a'. 

multiple of the complex CGC { j ,  j ,l:m,m,m) with 

j ,  = j ,  = 3n-1)  = +(-u-a '+m)  

m ,  = +(-a+a'+m) ,  

If conclusion (ii) of the introduction is correct the expression (3.12) for B,  must be a 

(3.13) 

m2 = +(a-a '+m)  

and I ,  m physical. These values are obtained by applying the operators ) (L  ki@ to 
q5,,.,. In the search for a suitable expression for the CGC (Yutsis et a1 1962) it has been 
observed that the various expressions available in the literature do not always give the 
same result when the j ' s  and the m's take complex values. A similar situation arises in 
the case of the CGC of SU(1, 1). Some caution is, therefore, necessary in using such ex- 
pressions for evaluating a complex CGC. In the present case the desired result is obtained 
by taking 

{ j , j , j :m ,m,m}  = (-1)jPj+"2(2j+ I)", 

r( j , + j ,  - j + 1 )r( j ,  - j ,  + j + 1 )r( - j ,  + j ,  + j + 1) 1;2 

r( j + m + 1 )r(j, + m2 + i)r( j ,  + m , + i ) r (  j ,  - m ,  + 1) 
r ( j - m + i ) r ( j , - m , + i )  

r(jl+jz+j+2) 1 x (  

1 
X r(j, - j ,  + m + l)r( j ,  - j + m, + 1 ) 

1 1 - j+m,  -j,+m,, - j - j 2 + j l :  
X 

j ,  - j+mz  + 1, j ,  - j ,  +m+ 1 
(3.14) 



792 S D Majumdar and D Basu 

When the values (3.13) and the identity (3.9) are used, this reduces to 

(2L+l) ( /+m)!Uj1  + m l  +1)T(j,+m2+1) 
( I -m)!r( j l  - m l + l ) ~ ( j 2 - m , + l ) ~ ( 2 j l + / + 2 ) ~ ( 2 j l - I + 1 )  

CGC = ( -  1)it  -J+m 

1 r ( 2 j l - m + l )  - I+m,L+m+l ,a ;  
a f a ' ,  m +  1 X m! 3F2 [ (3.15) 

In this form the CGC has a strong resemblance to the expression (3.12) for B,. The 
product of the CGC and the normalization factor Nnlm determined by the method of 
4 2  is 

1. r( 1 + I  - n) - I+m, I + m  + 1 ,  a ;  

a+a', m +  1 (21)! 3F2 [ 
and this is identical with the I-dependent part of B,. 

It is interesting to note that the normalization factor Nnlm obtained by the group- 
theoretical method differs trivially from the analytic continuation of the factor N i l ,  
of equation (3.4). The same is found to be true of Nh,,,, and if the latter is deter- 
mined by applying the raising and lowering operators gL f iM) to the state $,,,,,,, of the 
continuum. It will therefore be legitimate to use the primed N as the normalization 
factors of the continuum states. When this is done the coefficients B,Nb,,.,/Nb,, in the 
expansion become identical with the CGC (3.15). 

We conclude with a remark on the Coulomb scattering case discussed earlier. 
For m = 0, a = -n, a' = 1 ,  one of the ,F,-functions in (3.6) reduces to exp[-ik(r+z)] 
and the 3F2(l) series in (3.12) becomes saalschiitzian. The expansion of 4-n10 then takes 
the form 

e - i k r  lF,(iN, 1 ;  -ik(r-z)) 
eikr .f r ( / - iN+  1 )  

- - (-  2ikr)' r( -iN + 1 )  r(21+ 1 )  

x lF1(l + 1 + iN, 21 + 2 ; - 2ikr)P,(cos e). (3.16) 

From this the standard expansion of dC is obtained by using the identity, 

lFl(l + I - n ,  21+2; p )  = eP,Fl(l + I + n ,  21+2; - p )  (3.17) 

and taking the complex conjugate of both sides. 
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